
2019-10-24

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Character arrays
C-style strings

2
Strings

Outline

• In this lesson, we will:

– Define strings

– Describe how to use character arrays for C-style strings

– Look at the length of strings

– Consider string operations, specifically distances

– Learn how to manipulate strings

– Look at other alphabets and Unicode

3
Strings

Strings

• An array stores a list of values

– E.g., temperatures, voltages, positions, speeds, etc.

• Generally, each value has independent significance

• An array of characters, however, has the following properties:

– The significance comes from how the characters are strung together:

post pots spot stop tops opts spto

– The characters come from a small alphabet

• If the characters of an array come from a fixed alphabet, the array is
called a string of characters, or simply a string

– The alphabet for character arrays (C-style strings) is the set of all
ASCII characters

– More inclusive strings use Unicode

• The length of a string is the number of characters

4
Strings

String length

• C-style strings are defined as:

– An array of characters where the entry following the last character is
the null character '\0' with a value of 0x00

• '\0' must be included in the array length, but not the string length

• The string length is at least one less than the array length

– We will prefix all identifiers that are pointers to strings with "s_"

• We can determine the length of a string:

std::size_t string_length(char s_str[]) {

for (std::size_t k{0}; true; ++k) {

if (s_str[k] == '\0') {

return k;

}

}

}

What happens if you forget the '\0'?

2019-10-24

2

5
Strings

String length

• Important:

– 'a' is a single null character

– "a" is an array occupying 2 bytes

• The first entry is 'a' and the second is '\0'

– Oddly enough, "\0" is an array occupying 2 bytes

• Both entries are '\0'

6
Strings

String length

• Suppose we have an argument:

– Any characters after the '\0' are ignored

std::size_t string_length(char s_str[]) {
for (std::size_t k{0}; true; ++k) {

if (s_str[k] == '\0') {
return k;

}
}

}

s_str
0 1 2 3 4 5 6 7 8 9 10 11

E C E ␢ 1 5 0 \0 ? ? ? ?

7
Strings

String length

• We initialize k to zero and step through the array

std::size_t string_length(char *s_str) {
for (std::size_t k{0}; true; ++k) {

if (s_str[k] == '\0') {
return k;

}
}

}

s_str
0 1 2 3 4 5 6 7 8 9 10 11

E C E ␢ 1 5 0 \0 ? ? ? ?

k: 0

8
Strings

String length

• When we get to the null character, we return:

std::size_t string_length(char *s_str) {
for (std::size_t k{0}; true; ++k) {

if (s_str[k] == '\0') {
return k;

}
}

}

s_str
0 1 2 3 4 5 6 7 8 9 10 11

E C E ␢ 1 5 0 \0 ? ? ? ?

k: 7

2019-10-24

3

9
Strings

String length

• Question: What happens if you forget to include a null character?

– It will continue until it finds a '\0' (0x00) or it causes a
segmentation fault

std::size_t string_length(char *s_str) {
for (std::size_t k{0}; true; ++k) {

if (s_str[k] == '\0') {
return k;

}
}

}

s_str
0 1 2 3 4 5 6 7 8 9 10 11

E C E ␢ 1 5 0 ? ? ? ? ?

10
Strings

Printing of strings

• The std::cout object treats character arrays as special:

– It is assumed that if you are printing a character array, that array is
a string

#include <iostream>

int main();

int main() {

char s_hi[]{"Hello world!"};

std::cout << s_hi << std::endl;

std::cout << static_cast<void *>(s_hi)

<< std::endl;

return 0;

}

Output:
Hello world!
0x7ffcbfbf75eb

11
Strings

Operations on strings

• There is a significant amount of work into strings

– Extracting or finding substrings

– Describing or finding patterns

• Matching case or not

• Defining whitespace and finding only whole words

12
Strings

Distances between strings

• One important question is how similar are two strings?

– How close are two strings?

– Consider:

"Et tu, Brute?"

"t tu, Brute?"

"Et ut, Brute?"

"Et tu, Brune?"

– The Levenshtein distance is defined as the minimum number of
edits required to convert one string to another

– One edit is defined as

• Inserting or removing a character

• Replacing a character

• Swapping two adjacent characters

2019-10-24

4

13
Strings

Distances between strings

• For example, you could use the Levenshtein distance to determine
which words to suggest in a spell checker

– For example: “incomprehssible” is not a word, but

incomprehssible incomprehssible

incompressible incomprehesible

incomprehensible

– This word is:

• One edit away from incompressible

• Two edits away from incomprehensible

– Recommend “incompressible” first…

14
Strings

Distances between strings

• What’swrong with this picture?

– The distance is context insensitive

• Ideas cannot be incompressible, so suggest the second first…

15
Strings

Distances between strings

• Recall the properties of the Euclidean distance:

– dist(A, B) ≥ 0

– dist(A, B) = 0 if and only if A = B

– dist(A, B) = dist(B, A)

– dist(A, B) ≤ dist(A, C) + dist(C, A)

• All of these properties hold for the Levenshtein distance between
strings

16
Strings

Strings in other alphabets

• Other alphabets include:

– Morse code uses five characters:

• dot

• dash

• inter-character space

• inter-word space

• inter-sentence space

– Note: “SOS” is · · · - - - · · · while the mayday SOS is · · · - - - · · ·

inter-character spaces

2019-10-24

5

17
Strings

Strings in other alphabets

• Western European alphabets often include additional characters on
top of ASCII; however, Unicode allows for most alphabets

German ABCDEFGHIJKLMNOPQRSTUVWXYZÄÖÜß

Swedish ABCDEFGHIJKLMNOPQRSTUVWXYZÅÄÖ

Italian ABCDEFGHILMNOPRSTUVZ

Slovenian ABCČDEFGHIJKLMNOPRSŠTUVZŽ

Polish AĄBCĆDEĘFGHIJKLŁMNŃOÓPQRSŚTUWXYZŹŻ

Greek ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩ

Russian АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩъыьЭЮЯ

Persian ا ب پ ت ث ج چ ح خ د ذ ر ز ژ س ش ص ض ط ظ ع غ ف ق ک گ ل م ن و ه ی

Gurmukhi ੳਅੲਸਹਕਖਗਘਙਚਛਜਝਞਟਠਡਢਣਤਥਦਧਨਪਫਬਭਮਯਰਲਵੜ

18
Strings

Strings in nature

• Even better, deoxyribonucleic acid (DNA) is a string with a
four-characters alphabet:

– cytosine C

– guanine G

– adenine A

– thymine T

• All the algorithms developed by computer scientists for analyzing
and manipulating strings were immediately transferable to the
analysis and manipulation of DNA

– This is one of the beauties of abstraction

19
Strings

Summary

• Following this lesson, you now

– Know that strings are sequences of characters

• Those characters come from a fixed alphabet

– Know the most primitive means of storing strings are null-
character-terminated arrays of char

– Understand how to calculate the length of a string

– Understand string distances

– Are aware that

• Simple strings are limited to ASCII

• Other languages require Unicode

20
Strings

References

[1] No references?

2019-10-24

6

21
Strings

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

22
Strings

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a s_result of decisions made
or actions based on these course slides for any other purpose than that
for which it was intended.

